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The resu l t s  a re  p resen ted  of a theore t ica l  study, according to the asymptot ic  m ic ro l ay e r  model ,  
of the expansi:on of surface  bubbles a t  values of the Jakob number  above 30. The nonsteady influ- 
ence of the thermophysica l  p roper t i e s  of the heating surface  is accounted fo r  in the solution ob-  
tained by the method of quasis teady thermal  approximation.  

As the heat load inc reases  during bubble boiling, the f ract ion of heat  ca r r i ed  by a vapor  bubble away 
f rom the heating surface  increases  and becomes dominant [1]. This exper imenta l ly  establ ished fact  under -~ 
lines the need for  and urgency of studying the m a c r o c h a r a c t e r i s t i c s  of the boiling p roces s  and, par t i cu la r ly ,  
the anomalies  of the ra te  of expansion of surface  bubbles. E a r l i e r  models of expansion of vapor  bubbles at 
the sur face  of a hea t - t ransmi t t ingwal l  do not take into account the influence of the hea te r  ma te r i a l  [2-9]. At 
the same t ime,  the resu l t s  of studies of ni t rogen boiling, for  instance,  at a heat ing surface  made of var ious  
different  metals  indicate a s t rong dependence of the bubble expansion dynamics on the thermophysical  p r o p e r -  
t ies  of the wall ma te r i a l  [10]. 

The object  of this study is to der ive an express ion  for  the expansion dynamics of a vapor  bubble which 
will take into account the thermophysica l  p roper t i e s  of the hea t - t ransmi t t ing  wall. 

The exis tence of a thin liquid boundary l aye r  under  an expanding bubble has been demonst ra ted  by both 
indirect  t he r mome t r i c  and d i rec t  optical  methods [11, 12]. The volume of vapor  enter ing a bubble contains 
the product  of liquid evaporat ion f rom the hemispher ica l  surface  as well  as f rom the m i c r o l a y e r  surface .  
During the asymptot ic  stage of hemispher ica l  bubble expansion, when the bubble radius is much l a rge r  than 
the thickness of the thermal  boundary l aye r ,  evaporat ion f rom the curved surface remains  negligible so that 
[13] 

R d R 

0 R d 

Integration of express ion  (1) yields the law according to which a vapor bubble expands when the m i c r o -  
l ayer  evaporat ion is a given function of t ime.  

The dynamics of m i c r o l a y e r  evaporat ion at a solid surface  6(t) can be de termined f rom the solution to 
the one-dimensional  problems of heat conduction, inasmuch as 6 << R. A theoret ica l  calculation is in the 
general  case not poss ib le ,  owing to the nonlineari ty  of the heat  problem.  Nei ther  can the problem be solved 
by choosing an approximation for  6(t) with the use of s e r i e s  and special  functions [14]. 

Difficulties with obtaining an analytical  express ion  for  6(t) have st imulated a s ea rch  for  physical ly valid 
simplif icat ions.  F o r e m o s t  among them are  the assumptions of a uniform initial distr ibution and of a negligible 
heat  capacity of the mic ro laye r .  The l a t t e r  implies that the t empera tu re  field of the liquid layer  can be r e -  
garded as being quas is teady,  ent i re ly  plausible in the case  of a thin mic ro layer .  With these assumptions,  
then,  evaporat ion of a liquid f i lm at  the surface  of a mass ive  body is descr ibed  by the different ial  equation of 
energy t r a n s f e r  in the wall  

OTt(x,  t) = at :~Tl(x'  t) , 0 ~ x ~ < c ~  t > 0 ;  (2) 
Ot Ox ~ 
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with the boundary conditions 

. OT~ (x, t) t = O, 

OT,(O, t) =;~ T,(O, t)--T2(8(t), t) 

Ox , ~(0 

ar , (o ,  0 p~L da 
Oz Zt d r '  

(3) 

(4) 

(5) 

and the initial conditions 

T~ (,S (t), 0 = T ,  = const (6) 

r l (x ,  0) = v,o(x), (7) 

(0) = -- ~o. (s)  

Although the equation of heat  conduction for  the liquid f i lm has been el iminated h e r e ,  the nonlineari ty of 
boundary condition (5) sti l l  makes it difficult to solve the problem.  

Several  authors  t r ied  to solve the problem formula ted  in this manner .  Application of the approximate 
integral  method [15] has not yielded a ~(t) re la t ion in explici t  fo rm [16]. F o r  this reason  probably,  the ex- 
pansion model  for  a spher ica l  bubble at  the heating surface  in [17] was based,  in addition to these a s sump-  
t ions,  on a th i rd  assumption of a constant m i c r o l a y e r  thickness:  5(t) = const. In the der ivat ion of the equation 
for  the evaporat ion ra te  of a liquid f i lm [17] was used the cor responding  approximation to the exac t  solution 
descr ib ing the t empera tu re  field of a semibounded solid body with a uniform initial distr ibution and with heat  
t r ans fe r  f rom the surface  to the medium at ze ro  t empera tu re  [18]. The resul t ing equation of the vapor  bubble 
dynamics taking into account the thermophysica l  p roper t i e s  of the hea te r  ma te r i a l  is thus of a semiempi r i ca l  
na ture ,  inasmuch as it  includes two cor re la t ing  constants.  

Essent ia l ly  the same assumptions were  used in a l a t e r  s tudy [19]. Dis regard ing  the format ion  of a d ry  
zone,  i .e . ,  let t ing R d = 0, one calculated there  the volume of vapor  evaporated f rom the m i c r o l a y e r  by a 
numer ica l  method. As a resu l t ,  the following empi r ica l  express ion  for  the expansion of a hemispher ica l  
bubble was fitted 

R = 2 Ja Vast (9} 
- ,  

c~ FPT+ -~- 

with constant C 2 taken f rom the equation descr ib ing  the initial thickness 60 = C2 vg'~2 ~ of the liquid f i lm forming 
under  the bubble and de terminable  e i the r  analytically [20] o r  exper imenta l ly  [21]. 

In another  study [22] the problem (2)-(8) was solved analyt ical ly by the method of quas is teady the rmal  
approximation.  The resul t ing  theore t ica l  re la t ions  for  the dynamics of m i c r o l a y e r  evaporat ion,  fluctuations 
of the surface  t empera tu re ,  total evaporat ion t ime ,  and others  were  compared with the resu l t s  of numer ica l  
solution on a digital computer  [23]. Analytical and numer ica l  data a lmost  coincided,  within the accuracy  of 
graphs used for  computation. 

The main advantage of the solution in [22] is the expl ic i t  fo rm of the equation of dynamics.  It thus can  
be analyzed and simplif ied,  as n e c e s s a r y ,  fo r  evaluating the integral  in express ion  (1). Accordingly,  the 
evaporat ion ra te  of the fi lm is 

a ~-3~0 + 1 /  ( ~ + ~ 0 ~ - 2 4 M ~ + ~ ~  �9 (io) dt ---T~- M 

We now wri te  the integral  of express ion  (10) as 

- k~ ] 2 k~ ~ ~ (6 + 8o),- 88 (8+ ~) d~ =--T " 

8$. 

(11) 
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This  is an equation which d e s c r i b e s ,  in a genera l  f o r m ,  the law of motion of the f i lm boundary dur ing e v a p o r a -  
tion. The in tegra l  evidently involves e l e m e n t a r y  functions,  but is r a t he r  intr icate  in nature  and divides into 
three  r a n g e s  de te rmined  by the value of the complex 

= 

An analys is  of the integrand function (11) r evea l s  that  the second t e r m  under  the rad ica l  sign con t r ibu te s  
l i t t le  to the total  value (it vanishes  at the endpoints of the 0, - 5  interval)  and can be d i s regarded .  With this 
s impl i f ica t ion ,  we have the following law of f i lm evapora t ion  dynamics :  

+ + = - -  ~ b ~ - -  ---M-- ~ ~t: (12) 

The l a r g e s t  e r r o r  of this analyt ical  solution (12) does not exceed 2(E0 of the numer i ca l  solution in [23] 
fo r  sma l l  va lues  of ft. F o r  la rge  values of/3 the r e su l t s  according to Eq. (12) a r e  a lmos t  ident ical  to those 
obtained on the digital  computer .  In tegra t ion  of Eq. (12), which is n e c e s s a r y  for  the subsequent  der ivat ion of 
the equation of bubble expansion,  will f u r t h e r m o r e  cer ta in ly  reduce  the e r r o r  in the final express ion  for  the 
dynamics  of a sur face  bubble. 

Equation (12) readi ly  yie lds  an express ion  for  the total evapora t ion  t ime t e so that the radius  of the dry  
zone can be de te rmined .  Let t ing 6 = 0, we have 

o r  

( 3 + 2__M 
= (13)  te 4k~ a a 

2k~ . 
3 + . M  

F o e =  aite ~ - -  4 ~  ~ (13 ' )  

The a sympto te s  of this equation a re  

for k~-- 0 (k~ - *  = )  

Foe= 3 
4r~ , (14) 

2 for  k e ~o ( I~-~  O) 

Fo~----- 1 
2t~k~ (15) 

The solution to the equation of m i c r o l a y e r  evapora t ion  dynamics  (12) yie lds  the instantaneous f i lm th ick-  
ness  

2 2 a 2 (3M - -  2k~) (t - -  t2) (16) 8 = 3~oM 2 V ~  V k, M6o + 
(3M-- 2k~) VM (3M-- 2k~) 

In tegra t ion  of exp res s ion  (1) f rom 0 to R,  with the use of express ion  (16) but the effect  of the dry  zone 
d i s r ega rded ,  y ie lds  the bubble res idue as a function of t ime 

R == 2Ja V ' ~ - .  (17) 

V 3  2 

A comparison between this expression and the e m p i r i c a l l y  f i t ted approximat ion (9) on the assumption that 
M -*  oo, equivalent to 6(t) = const, reveals  that they d i f fe r  only in the i r  constants; here we have ~ instead of 
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Trans fo rming  Eq. (16) by the method outlined in [13] and let t ing 6 = 0, we obtain for  the radius of the dry  
zone R d 

1 

[(" ) ] R d = 2 R  ~ + 2  C ~ P r M +  4 (18) 
2kg 

AS the general  activity coefficient  i nc rea se s ,  the radius of the d ry  zone obviously inc reases  toward a l imiting 
magnitude. Increas ing  the phase t ransi t ion number  M and C24"P"~ will dec rease  R d. Inasmuch as C~4"P"~ and M 
inc rease  with dec reas ing  p r e s s u r e ,  radius R d will become maximum under  a near ly  a tmospher ic  p r e s s u r e .  
Calculations according to express ion  (18) agree  closely with the exper imenta l  data in [24] on the radius of the 
d ry  zone. 

Taking the dry  zone into account produces  a more  general  express ion  for  the dynamics of surface  bubbles 
at  intermediate  values of the thermal  activity coefficient ,  namely 

2 Ja C~'VP-}-- l / ~  - " " (1 9) 
R 

M(3M+2kb + V3-M-4-   M(3M+ek   

F r o m  this equation can be obtained, as special  cases ,  the asymptotes  

for  k~ -* 

R = 2 Ja C~ V-P--~- ga-~-; 
2 

C~ Pr + -  
M 

(20) 

f o r l ~  -~ 0 

R = 2 J a V k ~  (21) 

We note that at  high values of the phase t ransi t ion number  M express ion  (20) is completely identical  to, 
and express ion  (21) di f fers  only in the constant f rom the corresponding ex t r ema l  solutions obtained in [21], for  
ins tance,  through integral  es t imates .  

The theore t ica l  equation (19) descr ib ing the dynamics of a surface  bubble was also compared ,  with r e -  
gard to its basic f ea tu res ,  with the exper imenta l  data in [25] for  wate r  and severa l  organic  liquids. This com-  
par i son  indicates that C2 = 1.27 yields  the c loses t  agreement  with exper imenta l  data in the case of wa te r  with 
the Jakob number  within the 30-800 range ,  i .e . ,  that  no empi r ica l  cor re la t ing  coefficients a re  needed then. Fo r  
organic  l iquids,  which a re  more  v i scous ,  the smal les t  theore t ica l ly  possible value C 2 = 0.866 is p re fe rab le .  

An analysis  of Eq. (19) indicates ,  f u r t h e r m o r e ,  that the surface  mate r ia l  influences the ra te  of bubble 
expansion most  at low values of the cordplex C2Pr 1/2, i .e . ,  under  near ly  a tmospher ic  p r e s s u r e s .  As the p r e s -  
sure  drops,  the thermophysical  p roper t i e s  of the heater  mate r ia l  influence the dynamics of bubble expansion 
and thus also the heat t r ans fe r  during boiling less  and less .  

We note that the lower l imi t  of applicability of the said m i c r o l a y e r  model is analytical ly de termined  by 
the condition that Ja > 30 [20l. Determining the upper  l imit  of the Jakob number  at  which in tegral  ef fects  be-  
come so significant as to r ender  Eq. (19) inapplicable r equ i res  additional exper iments  according to the p r o c e -  
dure outlined in [16, 25]. 

a is the thermal  diffusivity; 
Cp is the heat  capacity;  
v is the kinematic  v iscosi ty ;  
T is the t empera tu re ;  
L is the heat  of evaporat ion;  
p is the densi ty;  

N O T A T I O N  
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t 
x, r 
6 
R 
V 
C2 
t2 
Ja = CP~P20:~o - Ts)/O"L 
P r  = V2/a 2 

2 k e = ~CplPl/k2CP292 
k k = X2/Sk 1 

M = L/Cp2(Tt0-Ts) 
~ =  plCpi (T10-Ts)/P2L, 
fl = m/kh  

is the time; 
are the space coordinates; 
is the microlayer thickness; 
is the bubble radius; 
ts the volume; 
is the constant; 
is the time of bubble expansion to a given present radius; 
Is the Jakob number; 
is the Prandtl number; 
,s the thermal activity coefficient; 
is the criterion characterizing the thermal conductivity of the liquid 
referred to that of the wall material;  

is the phase transition number; 

are the evaporation parameters.  

S u b s c r i p t s  

1 refers  
2 refers  
O refers 
s refers  
" refers  
e refers  
ML refers  
d refers  

to the wall surface; 
to the liquid; 
to the initial state (t = 0); 
to parameters of the saturation curve; 
to vapor; 
to the end of evaporation; 
to the microlayer;  
to the dry zone. 
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I N V E S T I G A T I O N  OF THE C O O L A N T  EDGE W E T T I N G  

A N G L E  FOR MESH H E A T  P I P E  WICKS 

B. I .  R y b k i n ,  Yu .  Yu.  S e r g e e v ,  
E .  M. S i d o r e n k o ,  V. P ,  S o k o l ' s k i i ,  
V. P .  S o r o k i n + *  a n d  M. G. S e m e n a  

UDC 536.27.00t.24 

Results are presented of an experimental investigation of the edge wetting angle of Freon-22, ethane, 
and ammonia for mesh wicks in the 20-115, 6-115, and 20-60~ temperature ranges, respectively. 

The effective units produced recently for heat transmission, namely, heat pipes [1, 2], are being utilized 
all the more extensively in engineering, including even in the 150-273~ temperature range, because of a num- 
ber of their inherent properties: the transmission of considerable heat fluxes at low temperature drops, the 
capability of producing isothermal conditions in relatively large areas,  the possibility of transforming a heat 
load, the negligible weight, the absence of moving parts and the requirement of pumps, and the total autonomy. 

A heat pipe transmits heat flux from the heating to the cooling zone by means of evaporation and conden- 
sation of the intermediate heat carr ier .  Reverse motion of the liquid from the condenser section to the heat 
supply zone is accomplished because of the capillary forces by means of a capillary-porous structure (wick) 
located on the inner heat pipe surface. 

One of the most widespread wick materials for heat pipes is a metaI mesh. In order to develop reliable 
methods of computing and designing heat pipes with mesh wicks, more complete knowledge of the capillary 
properties of the metal mesh structures is needed. The wick structure in any case of heat pipe utilization 
should assure delivery of the surface being cooled by the heat carrier.  The physical processes occurring in 
heat pipes impose a number of constraints on their heat-transmittingcapability, which are associated, in par-  
ticular, with the greatest achievable capillary head, which is determined by the Laplace equation for a s truc- 
ture with cylindrical pores 

( '  ,) + @r = 2~cos0 Ri R2 

It follows from (1) that the edge wetting angle 0 substantially influences the quantity Apc. 

A number of papers devoted to the investigation of the hydrodynamic and structural characteristics of 
different classes of porous materials used as heat pipe wicks has recently been published in the li terature [3- 
6]. 

However, the angle 0 is often assumed to be 0 ~ [7-8] in computations of the transport properties of wicks 
although wetting of the wick structure is far  from ideal in the majority of cases,  and different working liquids 
wet the capillary-porous structure with a specific edge wetting angle 0 in every case. The edge wetting angle 
is an important characteristic of the metal-l iquid combination which can be used as a wick and heat carr ier  of 
a specific heat pipe. Because of the complexity of the analytical computation of values of 0, experimental 
values of the edge angle are of practical value. 

Information about the edge angles is quite scarce in the li terature and practically absent for liquids in 
the temperature range of cryogenic and low-temperature heat pipe operation [9-11]. 

*Deceased. 
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